Injective modules and soluble groups satisfying the minimal condition for normal subgroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

injective modules and prime ideals

محور اصلی این پایان نامه، r- مدولهای a – انژکتیو می باشد که آنها را به عنوان یک تعمیم از مدول های انژکتیو معرفی می کنیم. در ابتدا مدول های انژکتیو را معرفی کرده، سپس برخی نتایج مهم وشناخته شده مدول های انژکتیو را به مدول های a – انژکتیو تعمیم می دهیم. در ادامه رابطه بین مدول های a – انژکتیو و حلقه های نوتری را بررسی می کنیم. پس هدف کلی این پایان نامه این است که با بررسی انژکتیو بودن ایده آله...

15 صفحه اول

Classifying fuzzy normal subgroups of finite groups

In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.

متن کامل

On Injective Modules for Infinitesimal Algebraic Groups, I

Let G be a connected, semisimple algebraic group defined over an algebraically closed field k of characteristic p > 0. We assume that G is defined and split over the prime field k0. In general, for any positive integer r, and any affine fc-group scheme H defined over k0, the r-th infinitesimal subgroup scheme Hr of H is defined to be the (scheme-theoretic) kernel of the r-th power of the Froben...

متن کامل

Groups with the weak minimal condition for non-subnormal subgroups II

Let G be a group with the property that there are no infinite descending chains of non-subnormal subgroups of G for which all successive indices are infinite. The main result is that if G is a locally (soluble-by-finite) group with this property then either G has all subgroups subnormal or G is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same autho...

متن کامل

Normal Subgroups and Quotient Groups

Another way to do this is to use individual elements. Take an element from {2, 6} and an element from {3, 7} and add them. Find the coset that contains the sum. That coset is the sum of the cosets. For example, if I use 6 from {2, 6} and 3 from {3, 7}, I get 6 + 3 = 1, which is in {1, 5}. Therefore, {2, 6}+ {3, 7} = {1, 5}. What happens if you choose different elements? Take 2 from {2, 6} and 7...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1971

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700046335